$\vec{x}:\text{the vector of the input signal }$
$y:\text{the output signal }$
$y=\vec{a}\cdot\vec{x}$
$\text{the estimated output}: y^{\prime}=\vec{a}^{\prime}\cdot\vec{x}$
$\vec{a}^*:\text{the vector of the posterior estimated parameters}$
$\text{assuming } y=\vec{a}^*\cdot\vec{x} \text{ and } \vec{a}^*=\vec{a}^{\prime}+\mu\vec{x}$
$e=(\vec{a}^{\prime}+\mu\vec{x})\cdot\vec{x} - \vec{a}^{\prime}\cdot\vec{x}$
$e=\mu\vec{x}\cdot\vec{x}=\mu{\lVert\vec{x}\rVert}^2$
$\mu=\dfrac{e}{{\lVert\vec{x}\rVert}^2}$
$\vec{a}^*=\vec{a}^{\prime}+\dfrac{e}{{\lVert\vec{x}\rVert}^2}\vec{x}$